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ABSTRACT
Modeling user behaviors as sequences provides critical advantages
in predicting future user actions, such as predicting the next product
to purchase or the next song to listen to, for personalized search and
recommendation. Recently, recurrent neural networks (RNNs) have
been adopted to leverage their power in modeling sequences. How-
ever, most of the previous RNN-based work suffers from the com-
plex dependency problem, which may lose the integrity of highly
correlated behaviors and may introduce noises derived from unre-
lated behaviors. In this paper, we propose to integrate a novel Time
Slice Self-Attention (TiSSA) mechanism into RNNs for better mod-
eling sequential user behaviors, which utilizes the time-interval-
based gated recurrent units to exploit the temporal dimension when
encoding user actions, and has a specially designed time slice hi-
erarchical self-attention function to characterize both local and
global dependency of user actions, while the final context-aware
user representations can be used for downstream applications. We
have performed experiments on a huge dataset collected from one
of the largest e-commerce platforms in the world. Experimental
results show that the proposed TiSSA achieves significant improve-
ment over the state-of-the-art. TiSSA is also adopted in this large
e-commerce platform, and the results of online A/B test further
indicate its practical value.
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• Information systems→Recommender systems; •Comput-
ing methodologies → Neural networks; Ranking.
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1 INTRODUCTION
Due to the increasing abundance of information on theWeb, helping
users filter information according to their current intents/preferences
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is more and more required, which emphasizes the importance of
personalized search and recommendation. Analogous to the as-
sumption in natural language processing (NLP) that the topic of
an article can be represented by the sequential words or sentences
of the article [22], user’s current intents/preferences can be cap-
tured by his/her sequential behaviors over the timeline. To model
sequential user behaviors for downstream applications, recurrent
neural network (RNN) has been considered [14, 26, 29], due to its
remarkable performance on many sequential learning problems.
For example, [26] endowed both users and movies with a long-
and short-term memory (LSTM) to predict user’s future behavioral
trajectories. Despite a certain success of above RNN-based methods,
modeling sequential user behaviors remains a challenging problem.

One issue is that long-term dependencies are still very hard to
preserve while maintaining middle- and short-term user behaviors.
Recent work has indicated that attention mechanism can help to
achieve state-of-the-art performance on a large number of NLP and
computer vision (CV) tasks, such as neural machine translation [1]
and image captioning [13]. Attention mechanism introduced into
deep networks provides the functionality to focus on portions of
input data or features to fulfill the given task, which might bring
benefits for the problem of complex dependencies within user his-
torical behaviors.

However, previous work along this line for modeling sequential
user behaviors has some limitations [16, 19, 28, 31]. Both of [16, 19]
only considered the primary attention mechanisms, which need
to be better designed. Furthermore, they employ the bi-directional
RNN structure, which is quite complicated and makes it challeng-
ing to be parallelized in the real world. [28, 31] abandoned RNN
structures and proposed the self-attention architecture instead for
different type sequential user behaviors. Nevertheless, the sequence
structure information is incomplete or even lost in the RNN-free
framework, whereas RNN’s autoregressive modeling can, in the-
ory, capture potentially infinitely long-term sequence with a small
number of parameters [3].

Another critical issue is that most of the previous work projects
each user action into an individual embedding vector. However,
user sequential behaviors are usually not consistent with action
time and intents, which is hard to be distinguished and encoded [32].
Consequently, the single user action embedding is not always ro-
bust. In recent work, [20] demonstrated that taking session-level
representations could have very different expressive power. Never-
theless, it is not still reasonable to divide sequential user behaviors
according to fix-length time window or online session of users.
Furthermore, the relationships among sessions are not considered
in previous session-based related work [8, 9].
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These two issues need to be optimized in advanced approaches
and systems. In this paper, we propose a time slice self-attention
approach and corresponding ranking system, called TiSSA, for
modeling sequential user behaviors, which we currently use for
the personalized recommendation. We first project user sequential
behaviors into session-level representations by our proposed time-
interval-based gated recurrent unit (GRU). Then we split these
session-level representations into slices according to the multi-scale
time window. The intra-slice self-attention is performed on each
slice independently, to capture the local dependency within each
slice. We further perform inter-slice self-attention for outputs of
each slice to exploit the global dependency. Finally, a feature fusion
gate combines the outputs of intra- and inter-slice self-attention to
generate context-aware representations for the user. We perform
vanilla attention between these context-aware representations and
the ranking item vectors, whose outputs are fed into a ranking
neural network for making recommendations. The effectiveness
of our adapted approach and ranking system is evaluated in our
offline and online experiments on Tmall1.

2 BACKGROUND AND RELATEDWORK
2.1 Gated Recurrent Units
A gated recurrent unit (GRU) was proposed by [5] to overcome
drawbacks of normal RNNs, i.e., vanishing and exploding gradients.
Specifically, the activation ht of the GRU at time t is a linear inter-
polation between the previous activation ht−1 and the candidate
activation h̃t :

ht = (1 − zt ) ⊙ ht−1 + zt ⊙ h̃t (1)
where ⊙ is an element-wise multiplication, and an update gate zt
decides how much the unit updates its activation. The update gate
is computed by

zt = σ (W
(1)
z xt +W

(2)
z ht−1) (2)

where xt is input at time t , and σ is sigmoid function. The candidate
activation h̃t is computed by

h̃t = tanh(W
(1)
h xt +W

(2)
h (rt ⊙ ht−1)) (3)

where rt is a reset gate and computed by

rt = σ (W
(1)
r xt +W

(2)
r ht−1) (4)

In Eq. 2 - Eq. 4, weight parametersW ∗z ,W ∗h andW ∗r connect different
inputs and gates.

2.2 Attention Mechanism
Vanilla attention is introduced by [1] firstly in the encoder-decoder
framework, to provide more accurate alignment for each position
in the machine translation task. In particular, given token embed-
dings of a source sequence x = {x1,x2, ...,xn } ∈ Rd×n and the
vector of a query q ∈ Rd , where d is the feature size of xi and q,
attention computes the alignment score between xi and q by a func-
tion f (xi ,q) ∈ R. A softmax function then transforms the scores
{ f (xi ,q)} to a probability distribution p (a |x,q) by normalizing over

1www.tmall.com, one of the largest e-commerce platforms in the world.

all the n tokens of x. Here a is an indicator of which token in x is
important to q on specific task. Then the attention-based pooling
can be formularized as C =

∑n
i=1 p (a = i |x,q)xi ∈ R

d . In reality,
additive attention is usually used, whose f (xi ,q) is formulated as

f (xi ,q) = w
T σ (W (1)xi +W

(2)q) (5)
wherew is a weight vector to project additive function σ (W (1)xi +
W (2)q) to a scalar.

Self-attentions are also studied in different mechanisms [25],
which are very expressive and flexible for capturing inner-relations
of the data at the encoder side. “Token2entirety” self-attention [12,
15] is one of widely used self-attention mechanism, which explores
the importance between token xi and the entire sequence x, and
compresses the sequence x into a vector. It removes q from Eq. 5
and adds bias term, i.e.,

f (xi ) = w
T σ (W (1)xi + b

(1) ) + b (2) (6)
Recently, [23] further demonstrated the advantage of mask-style

“token2token” self-attention mechanism, which explores the depen-
dency between token xi and token x j from the same sequence x,
and generates context-aware coding for each element. At the same
time, lots of work have shown that linear projections over multi-
subspaces could improve the performance in various tasks [25, 31].

Another work related to our paper is hierarchical attention mech-
anism, which is also demonstrated as a practical design in CV/NLP
tasks [17, 24, 27]. It is also a valid design for our problem, as it
addresses the local and global dependency issue, which profoundly
influences the accuracy of user intention summarization.

3 TWO PROPOSED IMPROVEMENTS
We propose two significant improvements to GRU structure and
basic attention mechanism in this paper.

3.1 Time-GRU
Since GRU is originally designed for NLP tasks, there is no consid-
eration of time intervals within inputs, which are very important
for modeling sequential user behaviors. Furthermore, as discussed
in Section 1, we argue that taking session-level inputs could have
very different expressive power comparing to inputs of individual
user behaviors (c.f. Section 5.4 for an in-depth analysis). Because
that user behavior sessions are changing along time with the prop-
erty of overlapping [7], the natural idea is to divide and embed
user behaviors into sessions over behavior time smoothly. Inspired
by some previous work with multi-timescale designs [18], we pro-
pose a time-interval-based GRU, called Time-GRU, to model user
session-level representations. Specifically, we rewrite reset gate as
a time-dependent format:

rt = σ (W
(1)
r xt +W

(2)
r ht−1 +W

(3)
r △tt + br ) (7)

Similarly, we have time-dependent update gate:

zt = σ (W
(1)
z xt +W

(2)
z ht−1 +W

(3)
z △tt + bz ) (8)

In Eq. 7 and Eq. 8, △tt ∈ R is the time interval between adjacent
actions, and b∗ are bias terms. Our motivation is to utilize time
interval information as a filter. In this way, the final activation ht
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Figure 1: The proposed directional multi-head attention
mechanism. Here, we useA(k )

i, j and L
(k )
i to denote head (k )i, j ∈ R

and (xiWck ) ∈ R
dc in Eq. (9), respectively, where k ∈m.

captures the session-level information by time t over changing time
smoothly.

3.2 Directional Multi-Head Attention
Inspired by previous work [23, 31], we propose a new token2token
self-attention mechanism to introduce the advantage of linear pro-
jections over multi-subspaces, which relates elements at directional
positions from a single sequence by computing the multi-head
attention [25] between each pair of tokens and generates context-
aware coding for each xi ∈ x. In particular, as illustrated in Fig. 1,
multi-head attention between each xi ∈ x and x j ∈ x is firstly com-
puted. We linearly project xi and x j , which are both d-dimensional
vectors,m times with different, learned linear projections to dc and
dq dimensions, respectively. Then attention heads are computed.
Specifically, for the k-th head of xi and x j , we have

headki, j = w
T σ (W (1) (xiWck ) +W

(2) (x jWqk )) (9)

where the projections are parameter matricesWck ∈ R
d×dc ,Wqk ∈

Rd×dq , and headki, j ∈ R,k ∈m. In practice, we set dc = dq = d/m.
All attention heads are organized as a matrix Rel ∈ Rn×n×m , whose
each element is an attention scalar. Linear projections of xi are
organized as another matrix Pro ∈ Rn×n×m , whose each row has
the same element (xiWck ) ∈ R

dc .
In order to preserve temporality information in sequence, a di-

rectional mask matrix M with the same dimension with Rel is
proposed,

Mk
i j =

{
0, i < j
−∞, otherwise

(10)

GivenM and Rel , we perform an element-wise add operation, and
follow a softmax normalization, each element of whose results is the
attention weight for corresponding element in Pro. After weighting
Pro with element-wise multiplication, matrix Pro is concatenated
along attention heads as a newmatrix with n×n dimensions, whose
each element is a (m × dc )-dimentional vector and then projected
to d-dimentional vector with a sharing learnable linear function.
Finally, the projected matrix is summed along matrix row to gen-
erate token2token self-attention for all elements from x, which is
s = {s1, s2, ...sn } ∈ Rd×n with the same dimensions with x.
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Figure 2: The proposed Time Slice Self-Attention approach
and ranking system.

4 TIME SLICE SELF-ATTENTION APPROACH
AND RANKING SYSTEM

A user can be represented as all his/her sequential behaviors u =
{(oi , ti ) |i = 1, 2, 3, ...,n}, where (oi , ti ) indicates the interaction be-
tween user u and object oi at timestamp ti . For recommendation
task, the objective of modeling sequential user behaviors is to pre-
dict the conditional probability of user’s next action p (o |u) for a
certain given user u.

In the following of this section, we introduce our proposed time
slice self-attention approach (TiSSA) and ranking system in de-
tail, and the overall system is illustrated in Fig. 2. We divide the
framework into several parts for a better description.

Feature Engineering. In our work, we take the user behavior
object with deep and wide features as inputs, which is illustrated
in Fig. 3. Each object o is represented by a multi-hot vector o =
{v1,v2, ...,vF }, where vi indicates i-th one-hot feature such as ID-
features and discretized statistical features. Following multi-hot
vector inputs, behavior embedding layer transforms the multi-hot
vector of oi into a low-dimensional dense vector ei ∈ Rde by linear
mapping each feature of oi , e.g., item id, to a dense vector and
concatenating them. Note that, we enable embedding sharing when
objects have features in common, e.g, item id and shop id, referring
to the same entities. Then we have the behavior embedding vector
for acted object oi ,

ei = [W (1)
embv1,W

(2)
embv2, ...,W

(F )
embvF ] (11)

where [.] denotes concatenating operation andW (i )
emb is learnable

embedding function parameters for i-th feature.
Session-Level Inputs.As discussed in Section 1 and 2, we prefer

to employ session-level representations as inputs for better capacity.
In particular, we put behavior embedding vectors e ∈ Rde×n into
our proposed Time-GRU sequentially, whose hidden states h ∈
Rdh×n represent the session-level inputs. In Time-GRU, sessions
of user behaviors are distinguished by time intervals smoothly.

Hierarchical Self-Attention. Since much previous work indi-
cates that time information has substantial power in modeling user
intents, we further divide session-level inputs h into k multi-scale
time slices, which is proved as a simple yet efficient method (c.f.
Section 5.4). Different user behavior platforms have different gran-
ularities of time slicing, which are hyper-parameters. After that,
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we perform intra-slice and inter-slice self-attention hierarchically
for modeling sequence dependencies at different levels.

Intra-Slice Self-Attention. We have two considerations for
this level of self-attention. One is to project variable-length be-
haviors in different time slices into a fix-length encoding vector
(zero-vector for empty time slice). The other is to capture the lo-
cal dependency within a time slice. In particular, we employ to-
ken2entirety self-attention (c.f. Section 2.2) for this purpose, where
shares all parameters in Eq. 6. Finally, local-context representa-
tions l = {l1, l2, ..., lk } ∈ Rdl×k at intra-slice level are generated by
intra-slice self-attention, where k is the amount of time slices.

Inter-Slice Self-Attention. Another important challenging for
modeling sequential user behaviors is to exploit the long-range
global dependency among time slices. We perform our proposed
directional multi-head self-attention (c.f. Section 3.2) after the intra-
slice self-attention mechanism, which can not only capture depen-
dencies but also preserve temporal orders. The outputs of inter-slice
self-attention operation have the same dimension with inputs l,
which are denoted as g = {д1,д2, ...,дk } ∈ Rdд×k .

Feature Fusion. The final context-aware representations u ∈
Rdu×k , where du = dд = dl , for each time slice is obtained by
combining local and global context representations with a fusion
gate. Motivated by the update processing of GRU, we design feature
fusion gate as follows,

F = σ (W
(1)
F g +W (2)

F l + bF ) (12)

u = F ⊙ l + (1 − F ) ⊙ g (13)
whereW ∗F and bF are learnable parameters.

Downstream Application Network.With generated context-
aware representations, we can ensemble various kinds of neural
networks according to downstream task requirement. In this pa-
per, we focus on evaluating predictions of interactions within the
user and items, and we set the downstream application network
to be a point-wise ranking network. For each candidate item, its
embedding vector q is calculated by the same embedding layer in
our framework, and vanilla attention between u and q is performed
to produce the attention pooling vector for the given user. After a
concatenating operation and two fully connected layers, we have
final sigmoid cross entropy loss function:

−
∑
u,q

yq loд σ ( f (u,q)) + (1 − yq ) loд (1 − σ ( f (u,q))) (14)

whereyq ∈ {0, 1} is the ground truth that indicates the user interacts
the candidate item or not, and f is the downstream application
network.

It is notable that feature engineering strategy can apply to many
machine learning models where the designed features and ID-
features exist. Time slice self-attention approach can be generalized
to handle tasks involving sequential data with time intervals. The fi-
nal context-aware representations can be further utilized by various
downstream applications such as the clustering task.

5 EXPERIMENT
5.1 Offline Dataset
This huge dataset is real data and collected from Tmall, which
describe the entire page viewed items and user feedbacks. Each
instance contains user historical sequential clicked itemswith times-
tamps and the observed items currently. All items contain item id,
category id, shop id, brand id and pre-designed discretized statistical
features, including price level, sales level and click level. In our task,
the target is to predict whether the user would have click/purchase
behavior for each item in currently viewed items. 15 days user
click-through behaviors are sampled for training, and we evaluate
the data of the next day. Related statistics are shown in Table. 1.

5.2 Compared Approaches
We compared our proposed TiSSA approach and ranking system
against several baselines from different aspects.

libFM. The task in this paper can also employ traditional rec-
ommendation methods that capture the content and collaborative
information. In our work, we use the popular libFM model [21] as
a representative of these methods.

Wide and Deep network (WD) [4]. This method only employs
the wide and deep features of current items to construct deep neural
network without consideration of sequential information.

Time-GRU. Themethod in [30] is employed, whose LSTM struc-
ture are replaced as our proposed Time-GRU in this paper because
of the adoption of Time-GRU in our framework.

Time-GRU + Attention. A vanilla attention is added on top of
Time-GRU method.

EDRec [16]. EDRec employs a bi-directional RNNs as an encoder
for modeling user sequential behaviors and a traditional vanilla-
attention-based RNN as a decoder to predict the user’s next action.

ATRank2 [31] and SHAN [28]. Two very recent state-of-the-
art work on modeling user behaviors, which only utilize fully con-
nected layer with specially designed attention mechanism. Both of
them employ the same downstream application network and loss
function with TiSSA.

Variant TiSSA. To justify each component in our proposed
TiSSA approach, we separate out each component in TiSSA system-
atically, including TiSSA without RNNs (TiSSA w/o RNNs), TiSSA
without Time Slices (TiSSA w/o TiS), TiSSA without Inter-Slice
Self-Attention (TiSSA w/o Inter-SSA), TiSSA without multi-head
attention (TiSSA w/o Multi-head) and TiSSA with Fix-Scale Time
Slices (TiSSA w. Fix-TiS).

5.3 Implementations and Metrics
Ourmethod and all compared approaches use common raw features
as inputs, whose hyper-parameters are tuned on the validation

2https://github.com/jinze1994/ATRank
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Table 1: Statistics of offline dataset. PV denotes page view. Avg. Len. and Med. Len. indicate average and median length of user
historical sequential behaviors, respectively.

Data Users Items Categories Shops Brand PV Avg. Len. Med. Len.

Amount 62.6 M 27.5 M 10.6 K 0.18 M 0.16 M 1.2 B 85.8 46

set using random search [2]. All approaches are implemented on
the TensorFlow machine learning system, utilizing 100 parameter
servers and 2000 workers, each of which runs with 15 CPU cores.

For libFM, we extract tuples ⟨user_id, item_id, label⟩, where the
label is 1 if the user has an action on the item and 0 otherwise.
Then the multi-hot vectors of ID-features and discretized statistical
features are concatenated to be x and the label is y in libFM. For
other methods based on neural network, we have following settings.

Feature Engineering. All methods based on neural network
employ the same feature embedding network (c.f. Section 4). All
embeddings are randomly initialized with mean value 0.0 and stan-
dard deviation 1.0. We set the embedded dimension size of item IDs
and category IDs, shop IDs, brand IDs as 64, 32, 32, 32, respectively.
All discretized statistical features are embedded into 16 dimensions,
which include click level, price level and sales level. All of these
embedding dimensions result from tuning on the validation set.

Network Shape. All hidden states sizes in the RNNs structure
are set to be 64. For variant TiSSA except for TiSSA w. Fix-TiS, we
set time slices as [0, 1), [1, 2), [2, 4), ..., [27, +∞) (#hour) based on the
prior knowledge of the property of time decay, and set the amount
of attention heads of inter-slice self-attention as 8 according to [25].
Time slices of TiSSA w. Fix-TiS are [0, 2), [2, 4), [4, 6), ..., [14, +∞)
(#day) for comparison. Sizes of remaining fully connected layers of
all approaches are set to be 128, which also results from tuning on
the validation set.

Batch Size. The batch size of all methods is set to be 512. All
the batches in the data set are trained for two epochs.

Optimizer. We use AdaGrad [6] as the optimizer for all ap-
proaches. The initial learning rate is 0.01 for variant TiSSA, and 0.1
for rest approaches. The l2-loss weight of regularization is set to
10−6 for RNN-based methods, and 5 × 10−5 for rest methods.

Note that, items embedding can be pre-computed and stored,
and each hidden state of GRU only depends on the last one. In
the inference procedure of real-world applications, TiSSA can save
historical hidden states and employ parallel computing processes
similar to RNN-free models, e.g., ATRank, after computing one GRU
cell. Specifically, in our practical online large e-commerce platform,
for one user and a batch of 3K items, TiSSA runs less than 50ms to
give ranking results.

To measure the performance of each model, we follow the prac-
tice in [31]. Specifically, Area Under ROC Curve (AUC) is employed.
The larger the value of AUC, the better the performance is.

5.4 Experimental Results on Offline Dataset
Firstly, we report the overall performance. Table. 2 shows the AUC
results for measuring the performance of different methods. Ac-
cording to overall AUC results, we can observe that TiSSA achieves
significant improvement than all other methods, which demon-
strates the rationality of our motivations and the effectiveness of

Table 2: Comparison results on offline dataset. Overall AUC
denotes AUC for the entire dataset, while Long-Term AUC
indicatesAUC for userswithmore than 150 historical behav-
iors and 3 active days. Bold typeset indicates the best perfor-
mance. The improvements from baselines to TiSSA is statis-
tically significant according to two-tailed t-test (p < 0.05).

Method Overall AUC Long-Term AUC

libFM 0.696 0.695

WD 0.697 0.697

Time-GRU 0.702 0.698

Time-GRU + Attention 0.709 0.714

EDRec 0.709 0.711

ATRank 0.724 0.721

SHAN 0.714 0.711

TiSSA w/o RNNs 0.732 0.726

TiSSA w/o TiS 0.729 0.733

TiSSA w/o Inter-SSA 0.735 0.732

TiSSA w/o Multi-head 0.740 0.739

TiSSA w. Fix-TiS 0.737 0.738

TiSSA 0.742 0.744

TiSSA approach on modeling sequential user behaviors, on the
macro level. Next, we make some comparisons and summarize our
findings as follows.

Baselines libFM and WD captures content and collaborative
filtering features at the same time but fails to capture the sequential
information of user behaviors, while other methods capture all
these information. This fact explains why libFM and WD perform
worse than other models.

Due to the limitation of Time-GRU in modeling complex de-
pendency, Time-GRU performs worse than Time-GRU + Attention
and TiSSA, which reveals the benefits of attention mechanism.
TiSSA w/o RNNs exhibits the improvement of overall AUC by a
remarkable margin comparing to ATRank and SHAN. This result
owes to the advantage that our proposed time slices hierarchical
self-attention mechanism cannot only capture local dependency
but the long-range global dependency of user historical behav-
iors efficiently. TiSSA, ATRank and SHAN outperform EDRec by a
significant improvement indicate that special designed attention-
mechanism brings much more benefits.

Comparing TiSSA to TiSSA w/o RNNs, TiSSA achieves improve-
ments as much as 1.4% for AUC. As the only difference between
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Figure 4: (Best view in color). Case study of making predic-
tion on whether the user interacts with next item according
to historical sequential behaviors. Deeper color in the heat
map indicates higher attention weight.

them is whether taking session-level representations as inputs, this
result validates the motivation of adoption of Time-GRU for trans-
forming individual behaviors into session-level representations. In
the comparison results of TiSSA w/o TiS, TiSSA w/o Inter-SSA
and TiSSA, we demonstrate the effectiveness of the hierarchical
self-attention designs. AUC declines whenwe removemulti-head at-
tention in inter-slice attention mechanism. One explanation is that
multi-head attention captures the relationship of inter-slice more
detailed by projecting source token into multiple subspaces. More-
over, the result of TiSSA w. Fix-TiS is worse than TiSSA, which is
consistent with previous studies on user behaviors on e-commerce
websites [10], e.g., the property of time decay.

For the in-depth analysis of the problem of long- and short-term
dependencies, we also report long-term AUC results in Table. 2,
which relies heavily on the modeling of long- and short-term depen-
dencies. The results show that TiSSA achieves the best performance
against all other methods. We also observe that performances of
methods without RNNs or attention mechanism drop a lot com-
pared with overall AUC, which is reasonable for the advantage of
RNNs + Attention framework at modeling long-term sequential
data. Long-term AUC of TiSSA w/o Inter-SSA also drops due to the
capacity of Inter-SSA for capturing long-range global dependency.

Table. 3 shows average attention scores for different time slices
over all offline Dataset, which decrease with time generally except
middle slices, e.g., [8, 16). It is because of the properties of user
behaviors on e-commerce websites, such as time decay and cross-
time dependency. Then we present a real case in Fig. 4. The middle
heat map is attention scores for different time slices with target item
(a mechanical watch), which is easy to understand the reason that
[0, 2) slice has the highest attention score (the top line of Fig. 4). It
is interesting to find that [32, 64) slice has the second high attention
score. With in-depth analysis, we can find that the user has lots of
interactions with formal wear at [32, 64) slice (the bottom line of
Fig. 4), which is highly related to the target item and captured by
our context-aware representations produced by TiSSA. Intra-slice
self-attentions of [32, 64) slice are also shown in Fig. 4.

5.5 Online A/B Test on Tmall
Online test with real-world e-commerce users is carried out to study
the effectiveness of our proposed method. In particular, we inte-
grate TiSSA into the search engine of Tmall. A standard A/B test is
conducted online [11]. Users of Tmall are randomly divided into

multiple buckets, and we randomly select two buckets for experi-
ments. For users in A bucket, we use the existing highly optimized
ranking solution of Tmall search engine, which ensembles results
from many powerful models. For users in B bucket, we further
integrate the results produced by TiSSA. Specifically, for a given
user, his/her context-aware representations are produced by TiSSA
in real time according to collected sequential behaviors. All recall
items of the search engine are preformed downstream application
network in this paper and produced an interacting probability to
attend existing online item ranking strategy, i.e., LTR. The test
was performed within 12 days, and comparative results are given
in Table. 4. It can be observed that our proposed TiSSA achieves
1.56% and 2.09% relative improvement for uCTR and uCVR than
the baseline, respectively. We perform the statistical test and the
resulting p-values for uCTR and uCVR are 9.1 × 10−12 and 0.0414,
respectively, both less than 0.05. Thus, we think the improvement
is significant. Such improvements are significant for Tmall search
engine systems and have significant business value. Furthermore,
the key metric to optimize in Tmall, i.e. GMV (Gross Merchandise
Volume), has an improvement of 3.66%. Considering the traffic of
Tmall, it would result in a significant boost in revenue. TiSSA has
been adopted into the search engine of Tmall.

6 CONCLUSION
In this paper, we propose a time slice hierarchical self-attention
approach to generate user context-aware representations for mod-
eling sequential user behaviors called TiSSA, which captures both
local and long-range global dependency of user actions. We also
propose a Time-GRU structure to produce session-level inputs for
better robustness and a directional multi-head attention. The empir-
ical evaluations on a huge dataset collected from the real world for
prediction of user interaction task show that our proposed approach
can be the new state-of-the-art solution for related tasks. The ab-
lation analyses on the separate parts of our TiSSA demonstrate
the importance of each proposed component in our model. Results
of online A/B test on Tmall search engine further demonstrate its
practical value.
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